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On the Chiral Hubbard Model and the 
Chiral Kondo Lattice Model 
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The integrability of the one-dimensional chiral Hubbard model is discussed in 
the limit of strong interaction, U = or. The system is shown to be integrable in 
the sense of the existence of an infinite number of constants of motion. The 
system is related to a chiral Kondo lattice model at strong interaction J = + or. 
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The Hubba rd  model has been of considerable interest due to its possible 
relevance to high-temperature superconductivity. The one-dimensional  
Hubbard  model with nearest neighbor hopping was solved by Lieb and 
Wu in 1968 with the help of the Bethe ansatz. It-3J" "- It was shown that the 
system exhibits a meta l - insula tor  phase transit ion at half-filling even for 
arbitrarily small interaction. Away from half-filling, the low-lying excita- 
tions of the system have been classified as Luttinger-liquid-like in the 
sense of Haldane. A few years ago, a one-dimensional  SU(2) Hubbard  
model with only relativistic right movers was introduced, t4J which reduces, 
at half-filling and large but finite on-site energy, to the SU(2) Ha ldane -  
Shastry spin system with 1/r 2 exchange interaction. 161' 3 Using the finite-size 
diagonalization result and the information provided by some special cases, 
an effective Hamil tonian  was proposed which was used to provide the full 
energy spectrum and the thermodynamics for any on-site energy. With the 
help of the effective Hamil tonian,  it was found that at T =  0 and half-filling, 
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-' See ref. 3 for a general reference book for researchers working in the field of exact 
solvabilities. 

3 Loosely speaking, the Haldane-Shastry spin system may be considered as a lattice version 
of the Calogero-Sutherland quantum system: 7) 
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there exists a critical value Uc at which a metal-insulator phase transition 
occurs in the systemJ 4) It was conjectured that the system is completely 
integrable for any on-site energy. However, a proof for the conjectured 
energy spectrum and the thermodynamics, as well as the structure of the 
wavefunctions at finite U, is still unknown. The integrability of this 
Hubbard model remains an open problem. 

In the strong-interaction limit U =  oo, it was discovered that the 
Gutzwiller-Jastrow product wavefunctions are eigenstates of the chiral 
Hubbard model, both in the SU(2) case and in the S U ( N )  case/5)'4 In fact 
all eigenstates can be expressed in terms of more generalized Jastrow 
product wavefunctions. Furthermore, the SU(2) energy spectrum ~5~ is the 
same as conjectured by Gebhard and Ruckenstein in their original workJ 4) 
In this work, we first discuss the integrability of the system in the limit 
where the interaction between the electrons is infinitely strong, U =  ~ .  
Using a simple argument, we shall exhibit an infinite number of constants 
of motion, showing that the system is integrable. 

In the second part  of the paper, we consider a one-dimensional chiral 
Kondo lattice. The conduction band has only right-moving electrons, and 
the electrons interact with each localized impurity moment through an 
exchange interaction. We identify the chiral Kondo lattice at J = + ~ with 
the Hubbard model which has been previously studied. With this identifica- 
tion, the full energy spectrum, the wavefunctions, the thermodynamics, and 
the integrability of the system can be obtained for the Kondo lattice in this 
limit. In particular, various correlation functions between the electrons and 
the impurity spins can be computed exactly for this system. 

The chiral Hubbard model Hamiltonian is defined on a one-dimen- 
sional lattice of length L: 

N 

H =  ~. ~ ( tuc*~cJ~)+U Z ~ n~,ng,,, (1) 

where the hopping matrix element is given by 

t,,,, = ( -- it)( -- 1 )~ . . . . .  ~ { (L /n )  sin[ n(m -- n ) /L  ] } - '  

For this S U ( N )  system, the spin of the electrons can take values from 1 
to N. In the case of SU(2), it is the Hamiltonian introduced by Gebhard 
and Ruckenstein. (4) In the strong-interaction limit U =  o0, at each site there 
is at most one electron; the number of holes N h and the number of 

4 Correlation functions have been computed by Forrester ~5) for the eigenstates of this l/r 
Hubbard model in the strong-interaction limit U= oo. 
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electrons N e on the lattice are conserved quantities. To rewrite the 
Hamiltonian in more convenient form, we perform the following unitary 
transformation T: 

t _+ (_l)Xe-'ax/Lc* Cxa - - x a  

cx,, ~ ( - 1 )~ e'~'WLc~ 
(2) 

under which the original Hamiltonian becomes 

I ~ zj c~,,cj,,] Pa n (3) H -+ 1~ = 2tPo ~ ( z , -  z i) -L 
1 <~i~j<~L 

with Pc ,  the Gutzwiller projector, making sure that there are no double or 
multiple occupancies, while zx = e 2~'~/L, with x = 1, 2 ..... L. 

In the Hilbert space of no double or multiple occupancies, the electron 
fields can be rewritten with the superalgebra representations, 

Pc(i) c*~oPo(i)=f*i~b, 
(4) 

Pc(i) c,~Po(i) = b~ fi~, 

where the f fields are fermions, the b fields are bosons, with the constraint 
~,, f*i,,fi,, + btibi = 1. Here Pc(i) is the Gutzwiller projector operator on the 
site i for the electron operators c and c*. Any state vector of the Hilbert 
space can be written as 

Are Nil 

I~b) = E ~b({xa}, {y}) 1-[ fx,~,I-[ y j *  b* IO) (5) 
{.,-,q. {y} i=1 y=l 

where the amplitude ~b is symmetric in the coordinates { y} of the b bosons, 
and antisymmetric when exchanging the spin and positions xta~, .'r of 
two f fermions. Here, (q~, q= ..... qz.) = (x~ ..... xm, Yt ..... YN,,) span the full 
chain. The eigenenergy equation of the system can then be written in the 
first-quantized form as follows: 

L E Z P~ ~b({q},{a}) 
i = l  j f f i l  (&i)  l - ' i - - L J  2 i<~i~j~<Ne 

= k~b({q}, {a}) (6) 

where Z~ = exp(2niqJL), the operator M~j exchanges the position variables 
q~ and q j, and the operator P~ exchanges the f-fermion spin variables a~ 
and crj. These two operators commute with each other, as they act on dif- 
ferent groups of variables of the wavefunction. 
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Following the ideas of refs. 12, we define generalized momentum 
operators H,., with i = I, 2 ..... Ne, 

L 

Hi = Y'. V,~M 0 (7) 
j = l  (~i) 

with Vo.=Zfl(Z~-Zj). With this special form of Vo., the generalized 
momentum operators satisfy the commutation relation 

[ rL, r 6] = g , J l , -  r L g  o (8) 

where 1 ~< i ~ j  <~ N e. We then introduce the following Hermitian operators: 

N~ 

A,,= ~ H 7 (9) 
s = l  

where n = 0, 1, 2 ..... oo, and the sum s is over the electrons, i.e., from 1 to 
Are. In particular, the Hamiltonian is given by 

( 1  ) /~= 2nt A, " L -~ Z P,j (10) 
1 <~i#j<~Ne 

Using the commutation relations (8), it can be shown that all the operators 
A,, commute with each other. Furthermore, the action of A,, on some 
amplitude ~b does not change the symmetry properties, i.e., the resultant 
wavefunctions remain symmetric in the b-boson positions and antisym- 
metric when exchanging any pair of the f-fermion positions and spins 
simultaneously. It is straightforward to prove the following relations: 

Mu[A,,q} ] = [A,,tk], N,, + 1 <~ i v~j<~ L 
(11) 

MoP~[A,,(o ] = (-- 1)[A,,~b], 1 <<,i~j<~N,. 

Since all the operators A,, commute with the Hamiltonian given by Eq. (10), 
we thus have an infinite set of conserved physical quantities of the system, 
showing that the system is indeed completely integrable. With these A,, 
we can construct corresponding quantities written in second-quantized 
language, which commute among themselves and with the Hamiltonian/-7. 
Carrying out the unitary transformation T -1, it is straightforward to 
convert them so that the resultant quantities are constants of the original 
Hamiltonian H. 

One interesting observation is that the mutually commuting Hermitian 
quantities A,, are also the invariants of the long-range supersymmetric t-J 
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model,(8), s i.e., [A,,, H t . j ]  = 0. As noted previously, the physical quantities 
I ,  = Z/L= ~/-/~, with n = 0, 1, 2 ..... commute with each other and with the 
supersymmetric t-J model Hamiltonian. The two families of quantities {_7,,} 
and {A,} are independent of each other, in the sense that we cannot write 
any member of one group in terms of a linear combination of members of 
the other group. Furthermore, by explicit computation, one can show that 
they do not commute, e.g., [A,,,I,,,] :AO. Therefore, it is clear that the 
previous family of conserved quantities {/',,}, although providing a proof of 
the integrability of the t-J model, does not exhaust all the constants of 
motion. The two infinite symmetries of the system do not commute with 
each other. 6 It would be very interesting to find a larger group of mutually 
commuting constants of motion. This is actually one of the most funda- 
mental questions encountered in study of quantum integrable systems. That 
is, when one has found an infinite number of simultaneous constants of 
motion, showing that the system is integrable, it is still not certain that this 
infinite set contain all possible simultaneous constants of motion of the 
system. 

In the following, we will show how the results of the chiral Hubbard 
model may be generalized to a one-dimensional Kondo lattice model. The 
Kondo lattice model has been an interesting model for the study of heavy 
fermion systems. "t) In this model, the system has an array of localized 
impurity moments, and the conduction electrons interact with the local 
moments through spin exchange. In general, the conduction band is best 
described by the tight-banding picture in which we have both right and left 
movers. However, in the following we assume that the electrons propagate 
in only one direction. This chiral Kondo lattice model is defined on a one- 
dimensional lattice, with the Hamiltonian 

L 

H = ~  ~ e(k) * asp Ck.Ck~+J E c~--~cip. Sf(i) (12) 
k a = T, ,!. i=1  

where the conduction band spectrum is e ( k ) = - t k ,  with k=2nK/L, 
- (L - 1 )/2 ~< K ~< (L - 1 )/2, in the momentum space. J is the coupling con- 
stant between the local impurity moments and the conducting electrons. 
The local moments are described by the spin-l/2 operators, that is, 
[ S~ (k), S}' (k)) = iS~(k) (plus two other commutation relations obtained 
by the cyclic permutations of x, y, z), with the relation S)(k) = 3/4, for all 

5 The  constants  of  mot ion  of  the long-range t-J models  were also discussed recently, tg~ The  

spectrum of the t-J model on uniform chain is given in Ref. 10. 
6A similar situation might happen in the conventional one-dimensional Hubbard model of 

nearest neighbor hop.ping and finite on-site energy U (E. H. Lieb, private communication). 
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the sites k = 1, 2,..., L. The Hamiltonian may also be written in the following 
way: 

L 

H= E E lo.cti,rcja q-J E ctia-2-r (13) 

where t,,,, = ( - i t ) (  - 1) I . . . .  ) { ( L / n )  sin[rr(m - n ) / L ] }  - i  

When the interaction of the electron and the impurity is very strong, 
i.e., J =  + oo, we can map the system onto the above chiral Hubbard 
model with infinite repulsion. Indeed, when there are N~ electrons on the 
lattice L, with Nr ~< L, then each electron will attempt to form a singlet 
with the impurity spin at each site, to lower the energy of the system as 
much as possible, and some unpaired impurity spins are left over on the 
lattice. The Hilbert space at each site can be either an unpaired impurity 
spin or a singlet of electron-impurity bound state. Due to the hopping of 
the conduction electrons, the singlets can hop on the lattice. In this case, 
the basis vectors can be written as 

la> =2-~"/2 I-[ ( l - P , , p , )  t t * 10> 
C XI  Yl C X2 Y2 " " " C XNe)'Ne 

i = 1  

| [al, az ..... P, ..... f12 ..... crz-u.> (14) 

where the singlets are located at positions {x} = (x 1 < x2 < ... < x•), and 
the unpaired impurity spins (~,, a2 ..... crL_N,) are positioned at sites { y} = 
(Y, < Y2 < "'" < YL-N,)' Here, the operator Pr,p, permutes the spin indices 
7i and fli, to form a singlet of electron and impurity at site x;. With P the 
projector onto this subspace, the Hamiltonian takes the form 

f f I= P H P  = P T P  + c (15) 

where T is the kinetic energy of the conduction electrons; the infinite con- 
stant c = ( - J / 4 ) N e  only shifts the origin of the energy of the system, a 
reference energy which is unimportant physically. In the space where the z 
component of the total spin is fixed, that is, S= = M ,  the number of 
unpaired up-spin impurities is A = M + ( L - N e ) / 2 ,  and the number of 
unpaired down-spin impurities is B =  - M +  ( L -  Ne)/2.  Here C~" x C~_~v, 
is the size of the Hilbert space. Any eigenstate of the Hamiltonian 
HI = P T P  can be written as a linear combination of the basis vectors, 

]~b) = ~  C(~) [0c) (16) 

We can identify the singlets as spinless fermions, and the unpaired 
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impurities as hard-core spin-l/2 bosons hopping on the lattice. Let us 
consider a system described by the following Hamiltonian: 

h=(1 /2 )  ~ PG(t~jb]~bi~g~gj)Pc (17) 
i ~ j , o "  

where the b fields are bosonic, g fields are fermionic, b fields commute with 
the g fields, and the Gutzwiller projector is 

L 

Pc  = I-] [O,.g~gi+E.o,.~b~.b,o] 
i = l  

The basis vectors may be represented as follows: 

10~)_ t t - t  ~t l.t . . .b  t 10> (18) - gx, gx,." " " ~xNeOylO'l Uy2o" 2 YL_NeO'L_Ne 

One can show that the systems described by H, and h are isomorphic to 
each other, by verifying the following matrix elements: 

<ill H,  I~> =</~1 h I~-> (19) 

where there is a one-to-one correspondence 10~> ~ 10Z> for the basis vectors. 
The Hamiltonian h is equivalent to the following Hamiltonian: 

h=(1/2) ~ (--tji) PFFti=FjaPF (20) 
i ~ j , ~ r  

where PF=I-I~=,PF(i ) ,  PF( i )=(1 - -F*~ ,F i tF~IF i s ) ,  and L - N e  is the 
number of the F fermions on the lattice. 

With the above identification, we have mapped the chiral Kondo 
lattice model onto the chiral Hubbard model with strong repulsion. There- 
fore, an infinite number of mutually commuting invariants can be obtained 
for the Kondo Lattice model. The wavefunctions and the thermodynamics 
of the system may be read off from previous results. (51 Any state vectors 
can be written as 

B 

l@>=. • ~({X},{Y})I-IFrit l-IF*xj~FxjT IP) (21) 
{X}, { Y} i =  1 j = I 

where IP>=I-I~=l F~r 10>, ~)=Ne is the number of g fermions, B =  
- M +  ( L -  Ne)/2 is the number of down-spin b bosons, and the amplitude 
q~ is antisymmetric in the positions { Y} and symmetric in the positions { X}. 
The following Jastrow wavefunctions are eigenstates of the Hamiltonian: 
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{r}) 
2 i( ) 

=exp-~-  m~. Xi+mhY',. Yj 
J 

x I-I d 2 ( X , - X s )  [-[ d ( Y , -  Y,) I ] d ( X , - X j )  (22) 
i < j  i < j  i , j  

with d(n)= sin(lrn/L). The quantum numbers m.,., mh are integers or half- 
integers, which ensures the periodic boundary conditions, satisfying the 
following constraints: 

Imhl <~ L/2 -- (B + Q)/2 
(23) 

Ira, ,  - m . , . -  L/21 <~ L/2 - ( , 4  + 0)/2 

with the eigenenergies given by 

E(m~., mh) = -- (Drt/L)[2mh -- m.,. + L/2] Q(1/2) (24) 

The full spectrum of the system takes the following form: 

E = - ( 2 r c t / L )  hi+  ~ n7t, (1/2) (25) 
i 1 t L =  I 

Here the integers (or half-integers) satisfy the conditions I,,,l <~L/2-  
(A + Q)/2 and [m~, i <- L/2 - (B + Q)/2, where ni <. ni+, and m, <. m,, + i. 
This result shows that the spectrum is invariant when changing the sign 
of t. 

The Jastrow product wavefunctions of the unpaired impurity spins 
and the singlets are typical RVB-type wavefunctions. Various correlation 
functions of the impurity spins and the singlets can be computed exactly, 
by trivially generalizing Forrester's work to this case. It should be 
remarked that the faraway unpaired impurity spins are also strongly 
correlated with each other, because only right movers exist in the conduc- 
tion band. At half-filling, the system is obviously an insulator, since each 
electron forms a singlet at each site and the singlets cannot hop from one 
site to another. 

For this chiral Kondo lattice model, the conduction electrons move 
only in one direction. We can anticipate many physical properties for the 
system even at finite coupling constant J. Away from half-filling, one would 
expect the system to be in a metallic state. At half-filling and for sufficiently 
large J, the system is expected to be insulating. In this model, the chirality 
of the conduction band will not prevent the system from becoming insulat- 
ing, unlike in some other situations, such as in the edges of the fractional 
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quantum Hall effect, where the chiral Luttinger liquid will not become 
localized under any randomness, due to lack of backscattering of the 
quasiparticle.~3~ In our case, although th electrons are moving in only one 
direction, the mechanism for localization is very different. The electron 
always feels the exchange interaction of the impurity spin, through the spin 
exchange interaction. For J large enough, each electron will attempt to 
form a localized singlet with each impurity spin; therefore, at half-filling, to 
transfer one electron from one site to another would break two singlets, 
causing a charge gap of O(J),  and the system would be in an insulating 
state. At J = 0, the system is a simple Fermi liquid. One would thus expect 
that there exists a critical coupling J,. where the system exhibits a metal- 
insulator phase transition at half-filling. An interesting question is whether 
any infinitesimal small J would drive the conducting band to an insulating 
state at half-filling, i.e., J , .=0  +. If J,.:/:0 +, one would expect J , .~ Itl by 
dimensional analysis, and the system is metallic for 0 < J <  Jc, while it 
becomes insulating for J,. < J. The metal-insulator phase transition would 
also occur at half-filling when changing IJI for ferromagnetic interaction 
between the conduction electrons and the impurity spins. Further work is 
necessary to locate the critical coupling Jc. It might also be interesting to 
see whether the model at finite J belongs to Jastrow-integrable type. 

In summary, we have obtained an infinite number of constants of 
motion for the one-dimensional chiral Hubbard model in the strong-inter- 
action limit U =  ~ .  We have also shown that this model is equivalent to 
the one-dimensional chiral Kondo lattice model at J =  + c~. It seems that 
the integrability condition might be investigated for finite on-site energy, 
using a similar approach. However, we have not succeeded in doing so 
for finite on-site energy. It has also seemed that the finite-J chiral Kondo 
lattice model is very probably integrable, as the conduction electrons move 
in one direction, only exchanging spins with the local moments. In the 
continuum limit, loosely speaking, the many-particle scattering matrices 
are very probably factorized into two-body ones with a continuum of 
relativistic electrons, and the situation of scattering matrices of the 
electrons off one impurity might be similar to the S-matrices of the solution 
of Andrei et al. 1141 Further work, either numerically or analytically, is 
necessary for evidence of its solvability. 
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